Physical Mapping of the Euglena gracilis Chloroplast DNA and Ribosomal RNA Gene Region[†]

Patrick W. Gray and Richard B. Hallick*

ABSTRACT: Euglena gracilis chloroplast DNA is cleaved into 5 fragments by restriction endonuclease PstI, 6 by XhoI, and 11 by BalI. These cleavage sites have been mapped with respect to each other and the previously reported (Gray, P. W., and Hallick, R. B. (1977), Biochemistry 16, 1665) BamH1 and SalI cleavage sites. The BalI, PstI, and XhoI sites were

determined by fragment molecular weight analysis, analysis of multiple digestion products, and digestion studies on isolated DNA fragments. The ribosomal RNA gene region has been located on the physical map. The chloroplast genome is found to contain three tandemly repeated 5.6-kbp segments, each of which contains a 16S and 23S ribosomal RNA gene.

C hloroplast DNA of the unicellular alga Euglena gracilis is a circular, double-stranded molecule. The estimated molecular weight of the DNA, based on contour length measurements, is 92 × 106, or approximately 140 kbp¹ (Manning and Richards, 1972). The major RNA transcripts of this genome are the 16S and 23S (0.56 × 106 and 1.1 × 106 dalton) chloroplast ribosomal RNAs (Scott and Smillie, 1967; Stutz and Rawson, 1970). The mature rRNA species have precursors of molecular weight 0.64 × 106 and 1.16 × 106 (Scott, 1976). No single common precursor to these molecules has been found. Depending on the stage of chloroplast development, chloroplast rRNA can account for up to 26% of total cell RNA in Euglena (Chelm et al., 1977a; Cohen and Schiff, 1976).

One of our goals has been to understand the mechanism for transcriptional control of the rRNA and other genes during development. A detailed knowledge of the location of genes on the chloroplast genome is important to such studies. We recently described a restriction endonuclease cleavage map of the Euglena chloroplast genome (Gray and Hallick, 1977). In the present study ambiguities in the earlier map have been resolved. Furthermore, the map has been extended to include the location of 11 BalI, 5 PstI, and 6 XhoI cleavage sites.

From the restriction nuclease mapping data it has also been possible to determine the location of the chloroplast rRNA genes. *Eco*RI fragments of *Euglena* chloroplast DNA that hybridize with ct rRNA have been identified in several laboratories (Stutz et al., 1976; Lomax et al., 1977; Mielenz et al., 1977). In this report we describe the location of these *Eco*RI fragments on the physical map. We find that the chloroplast genome contains three 5.6-kbp segments arranged in a tandem repeat, each of which contains a 16S and 23S ribosomal RNA gene.

Materials and Methods

Preparation of Chloroplast DNA. Chloroplast DNA from Euglena gracilis Klebs, strain Z Pringsheim cells was isolated

* From the Department of Chemistry, University of Colorado, Boulder, Colorado 80309. *Received August 15, 1977*. This work was supported by Grant GM 21351 from the National Institutes of Health Biomedical Sciences Support Grant 5 SO7 RR07013-12 to the University of Colorado.

¹ Abbreviations used: kbp, kilobase pair; rRNA, ribosomal RNA; ct, chloroplast; DNA fragments resulting from double digestion of ct DNA are B¹B (Bal¹-BamHI), B¹P (Bal¹-Pst¹), B¹S (Bal¹-Sal¹), B¹X (BAL¹-Xho¹), BP (BamHI-Pst¹), BS (BamHI-Sal¹), BX (BamHI-Xho¹), PS (Pst¹-Sal¹), PX (Pst¹-Xho¹), and SX (Sal¹-Xho¹).

as previously described (Chelm et al., 1977b; Gray and Hallick, 1977). Covalently closed, circular DNA was used predominately in this study.

Restriction Endonuclease Analysis. Restriction endonucleases SalI, EcoRI, and BamHI were prepared as previously described (Gray and Hallick, 1977). Endonuclease PstI was isolated from Providencia stuartii 164 (Smith et al., 1976), XhoI was isolated from Xanthomonas holicola, and BalI was prepared from Brevibacterium albidum by procedures described by R. J. Roberts (personal communication). SmaI was provided by Igor Dawid. The cleavage properties and nomenclature of the enzymes used in this study have been reviewed (Roberts, 1976). Electrophoretic analysis of restriction nuclease fragments, elution of DNA from agarose gels, and photography of gels have been described (Gray and Hallick, 1977).

Results

Digestion of Euglena Chloroplast DNA with Ball, Pstl, and XhoI. When Euglena chloroplast DNA is treated with PstI endonuclease, 5 fragments designated PstA, B, C, D, and E are produced. These fragments can be separated on a 0.7% agarose gel (Figure 1). Digestion of chloroplast DNA with BalI and XhoI yields 11 and 6 fragments, respectively. These fragments are designated BalA-J and XhoA-E. All of these fragments except BalD and BalE can be resolved on a 0.7% agarose gel (Figure 2). Estimates of the size and stoichiometry of the Ball, Pst I, and Xho I fragments are presented in Table I. The size estimates for the smaller (<10 kbp) fragments are based on their electrophoretic mobility compared with EcoRI digested λ DNA (Figure 2). The size estimates for the larger fragments were determined from multiple digestion experiments. For example, the largest Pst fragment (PstA, 53 kbp) is cleaved by BamHI into six fragments which total 53 kbp in size. An important feature of the BalI and XhoI digestion data is the fragments BalH and XhoD, each of 5.6 kbp and each present twice per genome. When chloroplast DNA is digested with BamHI, a 5.6-kbp fragment (BamE) is also produced in a stoichiometry of two per genome (Figure 2). Evidence will be presented below that these 5.6-kbp fragments arise from cleavage in a tandemly repeated region of the genome containing the rRNA cistrons.

Cleavage Sites in Euglena Chloroplast DNA for Ten Restriction Endonucleases. Data on the number of cleavage sites in Euglena chloroplast DNA for ten different site specific endonucleases are summarized in Table II. The observed

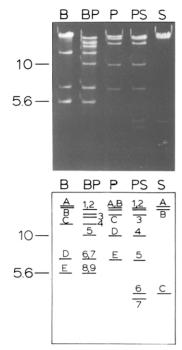


FIGURE 1: Analysis of *Euglena* chloroplast DNA by *BamHI*, *PstI*, and *SalI* restriction endonucleases. Fragments were separated by electrophoresis in a 0.7% agarose gel. Illustrated in the upper panel are the following digestion patterns; B, *BamHI*; BP, *BamHI-PstI*; P, *PstI*; PS, *PstI-SalI*; S, *SalI*. Fragment designations are shown in the lower, schematic representation. Size markers of 5.6 and 10 kbp are also given.

TABLE I: DNACleavage Products Resulting from Digestion of *Euglena gracilis* Chloroplast DNA with Restriction Endonucleases *Ball*, *Pstl*, and *Xhol*.

Ball		Pst	<u> </u>	XhoI		
Fragment	Length (kbp)	Fragment	Length (kbp)	Fragment	Length (kbp)	
BalA	34	PstA	53	XhoA	49	
BalB	27	PstB	35	XhoB	38	
BalC	17	PstC	25	$Xho\mathbb{C}$	28	
BalD	12	PstD	10	$Xho D^a$	5.6	
BalE	12	Pst E	6.9	XhoE	3.4	
Bal F	7.1					
BalG	6.3					
$BalH^a$	5.6					
BalI	2.3					
BalJ	2.0					
Total Bal	131	Total Pst	130	Total Xho	130	

^a All fragments are present in a stoichiometry of one except BalH and XhoD, which are each present twice per DNA molecule.

number of cleavage sites are compared with the number predicted assuming a random distribution of bases in the chloroplast genome. The enzyme *SmaI* does not cleave *Euglena* chloroplast DNA. No fragmentation of chloroplast DNA by *SmaI* either alone or in combination with several other endonucleases has been observed, in agreement with a previous report (Kopecka et al., 1977). The five enzymes described in this study were chosen because of the prediction that chloroplast DNA would contain approximately five cleavage sites for each enzyme. Four of these enzymes, *SalI*, *BamHI*, *PstI*, and *XhoI*, cleave chloroplast DNA at 3 to 6 sites, and the fifth Bal I, at 11 sites. Four other enzymes *EcoRI*, *HpaI*, *HindIII*, and *HaeIII*, all cleave *Euglena* chloroplast DNA at 27 or more

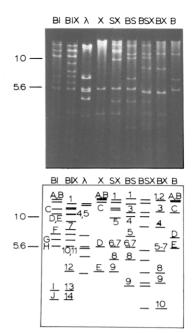


FIGURE 2: Analysis of *Euglena* chloroplast DNA by restriction endonucleases. A photograph of an ethidium bromide stained gel and a schematic representation of the banding pattern for the following digestion experiments are shown: B1, *Bal*1, B1X, *Bal*1–Xho1; λ, *Eco*R1 of λ DNA; X, Xho1; SX, Sal1–Xho1; BS, BamH1–Sal1; BSX, BamH1–Sal1–Xho1; BX, BamH1–Xho1; B, BamH1. The 5.6 and 10 kbp migration positions are also shown.

TABLE II: Predicted and Observed Number of Cleavage Sites in Euglena gracilis Chloroplast DNA for Various Restriction Nucleases.

Enzyme	Recognition sequence ^a	No. of cleavage sites	Predicted no. of sites ^b
Smal	CCCGGG	0	0.5
SalI	GTCGAC	3	4.5
Pst I	CTGCAG	5	4.5
BamHI	GGATCC	6	4.5
XhoI	CTCGAG	6	4.5
BalI	TGGCCA	11	4.5
EcoRI	GAATTC	27 ^c	40
HpaI	GTTAAC	$28-34^{d}$	40
HindIII	AAGCTT	$30-35^{d}$	40
HaeIII	GGCC	51-52e	32

^a Roberts, 1976. ^b Assuming 75% A + T base composition and a 130-kbp genome. ^c Gray and Hallick, 1977; Stutz et al., 1976; Mielenz et al., 1977; J. R. Y. Rawson, personal communication. ^d P. W. Gray and R. B. Hallick, unpublished observations. ^e Kopecka et al., 1977.

sites, as would be expected from their recognition sequences. From the data in Table II it may be concluded that there is not a completely random distribution of bases in the chloroplast genome, but the predicted and observed number of cleavage sites for a number of enzymes are in qualitative agreement.

Double Digestion of Euglena Chloroplast DNA with Ball, BamHI, PstI, SalI, and XhoI. The products and resulting cleavage site map for a BamHI-SalI double digestion were the subject of an earlier report (Gray and Hallick, 1977). The remaining nine possible double digestions involving the five enzymes BalI, BamHI, PstI, SalI, and XhoI were performed. The analyses of the fragments produced in these experiments are presented in Tables III, IV, and V. In addition, five of the digestion patterns are illustrated in Figures 1 and 2. For a

286 BIOCHEMISTRY GRAY AND HALLICK

TABLE III: DNA Cleavage Products Resulting from Double Digestion of Euglena gracilis Chloroplast DNA with Ball and BamHI, Ball and PstI, and Ball and SalI.

Ball-BamHI		Bal I-Pst I			Ball-Sall			
Fragment	Size (kbp)	Equiv fragment	Fragment	Size (kbp)	Equiv fragment	Fragment	Size (kbp)	Equiv fragment
B1B i	23		B1P 1	16		B1S 1	26	BalB
2	17	BalC	2	15		2	24	
3	14		3	12	BalD	3	12	BalD
4	14		4	12	BalE	4	12	BalE
5	12	BalD	5	10	$P_{St}D$	5	11	
6	12	BalE	6	10		6	10	
7	10		7	9.5		7	7.1	Bal F
8	7.1	BalF	8	7.1	BalF	8	6.3	BalG
9	5.3		9	6.9	PstE	9	5.6	B al H
10	5.3		10	6.8		10	5.6	BalH
11	5.3		11	6.3	BalG	11	4.4	SalC
12	2.3	<i>Bal</i> I	12	5.6	BalH	12	2.3	Ball
13	1.5		13	5.6	B al H	13	2.0	BalJ
14	1.2		14	3.4		14	1.0	
15	0.5		15	2.3	Ball			
16	0.3		16	2.0	BalJ			
17	0.3							
Total	131		Total	131		Total	129	

TABLE IV: DNA Cleavage Products Resulting from Double Digestion of Euglena gracilis Chloroplast DNA with Ball and XhoI, BamHI and PstI, and BamHI and XhoI.

Ball-Xhol				BamHI-PstI			BamH1-Xho1		
Fragment	Size (kbp)	Equiv fragment	Fragment	Size (kbp)	Equiv fragment	Size Fragment	Equiv (kbp)	Equiv fragment	
B1X 1	22		BP 1	35		BX 1	45	BamB	
2	18		2	25	$PstC^a$	2	38	$Xho\mathbf{B}$	
3	17	BalC	3	21		3	14	BamC	
4	12	BalD	4	14	BamC	4	8.8		
5	12	BalE	5	10	Pst D	5	5.3		
6	9.6		6	6.9	PstE	6	5.3		
7	8.0		7	6.9	BamD	7	5.3		
8	7.1	BalF	8	5.6	BamE	8	3.4	XhoE	
9	6.2		9	5.6	Bam E	9	2.8		
10	5.5		10	1.3		10	1.6		
11	5.5		11	0.3		11	0.3		
12	3.4	XhoE				12	0.3		
13	2.3	BalI							
14	2.0	BalJ							
15	0.1								
16	0.1								
17	0.1								
Total	131		Total	132		Total	131		

^a The BamHI cleavage site between BamA and BamB is very close to the PstI cleavage site between PstB and PstC. It is possible that BP1 is PstB, and BP2 has a BamHI site at one end and a PstI site at the other end.

double digest, the predicted number of cleavage products is equal to the sum of the products produced by the individual enzymes. In the nine double digestions each of the expected products greater than 0.5 kbp was identified. The size of the very small fragments could be inferred from their map location. Estimates of the molecular weight of each fragment are also presented in Tables III, IV, and V. The location of the internal cleavage sites in double digestions is also indicated in the tables. For example, in the BalI-BamHI digest (Table III), among the products are BalC, D, E, F, and I. Therefore, the six BamHI sites are located in BalA, B, G, H, H, and J.

It is important to note the fate of the 5.6-kbp fragments that are present twice per genome, BalH, BamE, and XhoD. There is no evidence for heterogeneity in these fragments. SalI and PstI do not cleave any of the 5.6-kbp segments. However, in all double digestions involving BalI, BamHI, and XhoI, the

two 5.6-kbp fragments are cleaved in the same manner.

Size of the Euglena Chloroplast Genome. The molecular weight of Euglena chloroplast DNA is generally accepted as 92×10^6 , or $140 \, \text{kbp}$. This result was based on a careful comparison of the contour lengths of circular chloroplast DNA and circular λ DNA (Manning and Richards, 1972). In the present study, the size of the chloroplast genome estimated from the restriction nuclease fragments produced in double digestion experiments is approximately $128-132 \, \text{kbp}$. In previous studies, the HaeIII restriction nuclease fragments of Euglena chloroplast DNA have totaled $132 \, \text{kbp}$ (Kopecka et al., 1977) and the EcoRI fragments $128-133 \, \text{kbp}$ (Gray and Hallick, 1977; Mielenz et al., 1977; Stutz et al., 1976). The reason for the slight discrepancy between the measurements from contour length and from restriction nuclease data may be related to the high A + T base content of the genome (75 mol %). The elec-

Pst I-Sal I			Pst I-Xho1			SalI-XhoI		
Fragment	Size (kbp)	Equiv fragment	Fragment	Size (kbp)	Equiv fragment	Fragment_	Size (kbp)	Equiv fragment
PS 1	44		PX 1	32		SX 1	38	<i>Xho</i> B
2	35	PstB	2	25	PstC	2	28	
3	25	PstC	3	23		13	17	
4	10	PstD	4	20		4	16	
5	6.9	$Pst\mathbf{E}$	5	6.9	PstE	5	12	
6	4.4	SalC	6	6.4		6	5.6	XhoD
7	4.1		7	5.6	XhoD	7	5.6	XhoD
8	0.95		8	5.6	XhoD	-8	4.4	SalC
			9	3.4	XhoE	9	3.4	XhoE
			10	3.0				
			11	0.2				
Total	130		Total	131		Total	130	

TABLE V: DNA Cleavage Products Resulting from Double Digestion of Euglena gracilis Chloroplast DNA with PstI and SalI, PstI and XhoI, and SalI and XhoI.

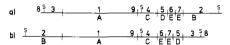


FIGURE 3: BamHI and SalI cleavage map of Euglena chloroplast DNA. (a) Previously described (Gray and Hallick, 1977) map. (b) Modified map as described in the text. Letters refer to BamHI fragments and numbers refer to BamHI-SalI (BS) double digestion products. The estimated sizes of fragments BS 1-9 are, respectively: 54, 26, 13, 11, 6.9, 5.6, 5.6, 4.4, and 2.8 kbp. BS 9 is the small fragment between BS 1 and 4.

tron microscope contour length and/or the electrophoretic mobility of DNA fragments in agarose gels may be dependent on base composition. We will assume a size of 130-131 kbp below in describing a physical map of the genome, since our data are based on electrophoresis experiments.

Physical Map of the Euglena gracilis Chloroplast DNA. In the initial restriction nuclease map of Euglena chloroplast DNA, the three SalI and six BamHI cleavage sites were located (Gray and Hallick, 1977), but a few unresolved ambiguities were evident in the BamHI-SalI double digestion map. While mapping three additional enzymes, BalI, PstI, and XhoI, it becomes apparent how to resolve these ambiguities. Therefore, the earlier map is modified as follows (Figure 3): (1) The 5.6-kbp fragments are now known to be the same and are both designated BamE, rather than E and F; (2) the Bam fragment order A-C-E-E-D-B rather than A-C-D-E-E-B has been established; (3) the order of the internal BamHI-SalI double digestion products within BamB (BS 3-8-2) has been inverted; and (4) the estimated fragment sizes are now based on a 130-kbp genome size.

The arrangement of the Ball, BamHI, Pst I, Sall, and XhoI fragments into a physical cleavage site map was based primarily on the results of the double digestion experiments. A map that is consistent with the 31 limit and 115 double digestion products is shown in Figure 4.

In addition to double digestion data, the PstI mapping was based on studies with isolated fragments. Redigestion of isolated PstA by BamHI yielded BamC, D, E, E, and BP3 as products. Treatment of PstA with SalI gave PS1, 6, and 7 as products. Redigestion of BamA by PstI gave BP1, PstD, PstE, and BP 10. Finally, PstC was the major product when BS2 was redigested with PstI. All of the above results are consistent with the map order predicted from the double digestions.

A third type of evidence for the cleavage site map came from partial digestion experiments. The Ball partials G-H, H-H. and H-J were obtained, consistent with the predicted G-H-H-J

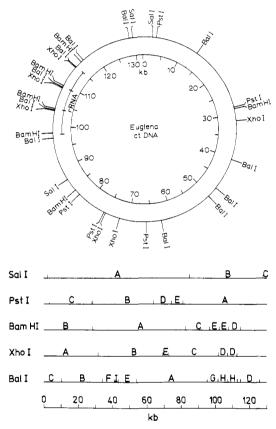


FIGURE 4: Restriction endonuclease cleavage map of Euglena chloroplast DNA. The letters refer to cleavage fragments described in the text and in Table III.

fragment order. A BalF-I partial was also found. Partial digestion with XhoI gave the D-D partial, but not D-E. The PstI partial corresponding to PstD-E, but not C-D or C-E could be generated.

The relative order of Pst D and E predicted from the double digestion data was confirmed by means of an exonuclease III digestion experiment. Chloroplast DNA was digested with SalI and then treated with exonuclease III for varying lengths of time. Following heat treatment to destroy the nuclease, the DNA was treated with PstI. The fragment PstE was placed closest to the SalI cleavage site since it was found to be more susceptible to exonuclease III than Pst D.

288 BIOCHEMISTRY GRAY AND HALLICK

FIGURE 5: Restriction endonuclease cleavage sites and ribosomal RNA cistron locations on the *Euglena* chloroplast genome. Approximately 20 kbp of the 130 kbp genome is shown.

The relative order of the adjacent fragments BalF and BalI could not be determined since these two fragments were not cleaved in any of the double digests. The fragments BalD and E were also not cleaved by any enzyme and cannot be resolved at present.

Physical Map of the Ribosomal RNA Gene Region. An important region of the cleavage site map is the region containing the fragments BalH, BamE, and XhoD. These fragments are each 5.6 kbp in size, each present twice per genome, and are paired (BalH-H, BamE-E, XhoD-D) as judged by partial digestion and double digestion results. The three sets of paired fragments overlap one another in a 17-kbp segment of the genome, which maps in the region between 97 and 115 kbp on our representation of Euglena chloroplast DNA (Figure 4). A detailed map of this region is shown in Figure 5. There are also two adjacent 5.6-kbp HpaI fragments (HpaG) present in this region (P. W. Gray, unpublished observation). The only DNA sequence arrangement that can lead to such a digestion pattern consists of three adjacent, tandemly repeated 5.6-kbp segments. In each 5.6-kbp repeat there is a single cleavage site for each of the enzymes Ball, BamHI, HpaI, and XhoI. A final conclusion is that each of the 5.6-kbp restriction nuclease fragments, BalH, BamE, HpaG, and XhoD, have a permutation of the same DNA sequence.

Each 5.6-kbp repeated segment contains two EcoRI cleavage sites. This finding was based on redigestion studies with isolated BamHI fragments D and E. Both BamE fragments are cleaved into an EcoRI fragment P, and two BamHI cleavage products of EcoRI fragment L (Figure 6; EcoRI fragment nomenclature based on Gray and Hallick, 1977). BamD is cleaved into EcoRIP, a 2.35-kbp fragment identical with one of the cleavage products of EcoRIL, and a 2.1-kbp product (Figure 6). Therefore, EcoRIP and L, which total 5.6 kbp in size, represent the DNA sequence of a single repeat, and are arranged in the 13.5-kbp segment P-L-P-L-P in the repeated region. From double digestion experiments involving EcoRI and BamHI and from studies on a recombinant plasmid DNA carrying EcoRIF (P. W. Gray and R. J. Hall, unpublished observation), the fragments EcoRIF and B have been mapped at either end of the above sequence (Figure 5).

EcoRI fragments of approximately 7.3, 3.2, and 2.3 kbp, which correspond to the fragments designated F, L, and P above, have previously been shown to hybridize with 16S and 23S chloroplast ribosomal RNA (Stutz et al., 1976; Mielenz et al., 1977; J. R. Y. Rawson, personal communication). Since these fragments have been mapped in the repeated region, it may be concluded that the 16S and 23S rRNA genes are each present on the 5.6-kbp repeated DNA segment. This rRNA region is present three times as a tandem repeat on the genome and accounts for 17 kbp, or 13% of the 130-kbp DNA.

Discussion

The 5.6-kbp repeated segment of *Euglena* chloroplast DNA is large enough to code for both the 16S and 23S chloroplast

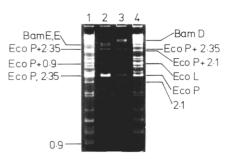


FIGURE 6: Analysis of EcoRI fragments in the 5.6 kbp repeated DNA segment. BamD and BamE were redigested with EcoRI. The products, which include both limit and partial digestion products, were analyzed by electrophoresis on a 2% agarose gel. (Lane 1) BamHI-EcoRI double digestion of ct DNA; (2) EcoRI digestion of BamE; (3) EcoRI digestion of BamD; (4) EcoRI digestion of ct DNA. The interpretation of the fragment patterns for lanes 2 and 3 is given at the left and right of the figure, respectively.

ribosomal RNA and a small amount of spacer region. The mature rRNAs are approximately 0.56×10^6 and 1.1×10^6 daltons (Scott and Smillie, 1967; Stutz and Rawson, 1970). DNA coding for these transcripts would be approximately 1.6 and 3.2 kbp respectively, accounting for 4.8 kbp of each 5.6-kbp rRNA repeat. Precursors for the 16S and 23S rRNAs of 0.64×10^6 and 1.16×10^6 daltons have been described (Scott, 1976). At least 5.3 kbp is required to code for the precursor molecules, leaving approximately no more than 300 bp of nontranscribed spacer in the rRNA gene region.

Rawson and colleagues (J. R. Y. Rawson, personal communication) have been independently studying the arrangement of chloroplast rRNA genes, employing bacterial plasmid DNA recombined with fragments BamD or BamE for nuclease digestion and hybridization studies. These workers first recognized the relationship between the EcoRI fragments P and L, and the BamD and BamE fragments, and predicted three rRNA cistrons per genome. They also made the important additional observation that 16S rRNA hybridizes only to EcoRIP, whereas 23S rRNA hybridizes to both L and P. We have confirmed their physical mapping of the EcoRIP and L fragments, and used their hybridization results to locate the 16S and 23S rRNA genes on our cleavage site map (Figure 5). The sequence coding for mature 16S rRNA is placed entirely in EcoRIP. This conclusion is based both on the hybridization data (of Rawson and colleagues) and the known RNAse T1 oligonucleotides of Euglena chloroplast 16S rRNA. RNA transcription through an EcoRI cleavage site, and subsequent digestion of the RNA with RNase T1 would yield an oligonucleotide that would begin 5'AAUUC.... No oligonucleotide with this sequence is among the reported RNase T1 products of 16S rRNA in Euglena (Zablen et al., 1975). The EcoRI site preceding the 16S rRNA gene must actually be 300-500 bp from the start of the rRNA repeat, since both BalI and XhoI sites, which are located 300-500 bp from the EcoRI site, map in each 5.6-kbp segment. Following the 16S gene and also beginning in EcoRIP is the 23S rRNA precursor, which must occupy almost the entire remainder of the 5.6-kbp re-

There have been two reports that mature chloroplast rRNA hybridizes with *Eco*RIB (Stutz et al., 1976; Mielenz et al., 1977). This fragment does not map in the regions identified as coding for 16S and 23S rRNA. Since the 16S rRNA precursor is approximately 300 nucleotides longer than 16S rRNA, the observed hybridization may be due to a rRNA precursor. The transcription of this precursor would be predicted to begin outside the above mentioned *Eco*RI site.

From the restriction nuclease mapping results, it may be concluded that the Euglena chloroplast genome contains three cistrons for the 16S and 23S rRNA. There have been several previous determinations of rRNA cistron content based on hybridization experiments, with reported values including one (Rawson and Haselkorn, 1973), two (Vandrey and Stutz, 1973; Groul et al., 1975; Chelm et al., 1977b; Mielenz et al., 1977), three (Stutz and Vandrey, 1971; Kopecka et al., 1977), and three to six (Scott, 1973). Although the recent estimate of Stutz and colleagues of three cistrons per genome was accurate (Kopecka et al., 1977), it is important that this result could be verified by physical mapping of the genes.

In addition to the map of the rRNA genes, a detailed cleavage site map of the entire Euglena chloroplast genome has been determined. Thirty-one limit digestion products of the enzymes BalI, BamHI, PstI, SalI, and XhoI, and 115 double digestion products have been ordered in a self-consistent cleavage site map. This map represents to the best of our knowledge the most detailed physical analysis of this genome available. However, since additional physical studies of Euglena chloroplast DNA are in progress, including buoyant density analysis of fragments, mapping of additional cleavage sites, and transcription mapping experiments, the results presented here will undoubtedly be refined as new data become available.

Acknowledgments

We wish to thank J. R. Y. Rawson for the communication of his rRNA mapping and hybridization results, which enabled us to order the 16S and 23S genes within the 5.6-kbp repeated DNA segment.

References

Chelm, B. K., Hoben, P. J., and Hallick, R. B. (1977a), *Biochemistry* 16, 776.

- Chelm, B. K., Hoben, P., and Hallick, R. B. (1977b), Biochemistry 16, 782.
- Cohen, D., and Schiff, J. A. (1976), Arch. Biochem. Biophys. 177, 201.
- Gray, P. W., and Hallick, R. B. (1977), Biochemistry 16, 1665.
- Groul, D., Rawson, J. R. Y., and Haselkorn, R. (1975), Biochim. Biophys. Acta 414, 20.
- Kopecka, H., Crouse, E. J., and Stutz, E. (1977), Eur. J. Biochem. 72, 525.
- Lomax, M. I., Helling, R. B., Hecker, L. I., Schwartzbach, S. D., and Barnett, W. E. (1977), Science 196, 202.
- Manning, J. E., and Richards, O. C. (1972), *Biochim. Biophys. Acta* 259, 285.
- Mielenz, J. R., Milner, J. J., and Hershberger, C. L. (1977), J. Bacteriol. 130, 860.
- Rawson, J. R. Y., and Haselkorn, R. (1973), J. Mol. Biol. 77, 125.
- Roberts, R. J. (1976), CRC Crit. Rev. Biochem. 4, 123.
- Scott, N. S. (1973), J. Mol. Biol. 81, 327.
- Scott, N. S. (1976), Phytochemistry 15, 1207.
- Scott, N. S., and Smillie, R. N. (1967), Biochem. Biophys. Res. Commun. 28, 598.
- Smith, D. I., Blattner, F. R., and Davies, J. (1976), Nucleic Acids Res. 3, 343.
- Stutz, E., and Rawson, J. R. (1970), Biochim. Biophys. Acta 209, 16.
- Stutz, E., and Vandrey, J. P. (1971), FEBS Lett. 17, 277.
- Stutz, E., Crouse, E. J., Graf, L., Jenni, B., and Kopecka, H. (1976), in Genetics and Biogenesis of Chloroplasts and Mitochondria, T. Bücher, Ed., Amsterdam, North-Holland Publishing Co., p 339.
- Vandrey, J. P., and Stutz, E. (1973), FEBS Lett. 37, 174.
- Zablen, L. B., Kissil, M. S., Woese, C. R., and Buetow, D. E. (1975), *Proc. Natl. Acad. Sci. U.S.A.*, 72, 2418.